Mean from a frequency table:

$$\bar{x} = \frac{\sum fx}{n} = \frac{\sum fx}{n} = \frac{\sum x}{\sum f} = \sum x \cdot P(x)$$

Standard Deviation:

$$\sigma = \sqrt{\frac{\sum f(x^2) - \frac{1}{n}(\sum fx)^2}{n}} = \sqrt{\frac{\sum f(x^2) - (\sum fx)^2}{n}} = \sqrt{\sum x^2 P(x) - (\sum x P(x))^2} = \sqrt{\sum x^2 P(x) - \mu^2}$$

Notation: In the context of probability distributions:

$$\mu = \text{mean} = \sum (x \cdot P(x)) = \frac{\text{AKA Expected value}}{E(x)}$$

$$\sigma^2 = \text{variance} = \text{Var}(x)$$.