A new statistic in a binomial experiment:

Sample proportion \(\hat{p} = \frac{x}{n} \) of successes

This is different from \(p \):

\[p = \text{population proportion of success,} \]

\(\hat{p} \) = the statistic that estimates the parameter \(p \).

Each \(x \) corresponds to a \(\hat{p} = \frac{x}{n} \) so they have the same probabilities. They are both binomial.

But binomial probabilities are approx. normal if \(np \geq 10 \) & \(n(1-p) \geq 10 \).

\[E(\hat{p}) = E\left(\frac{x}{n}\right) = E\left(\frac{1}{n} \cdot x\right) = \frac{1}{n} E(x) = \frac{1}{n} np = p \]

So \(\hat{p} \) is an unbiased estimator of \(p \).

Also

\[\text{Var}(\hat{p}) = \text{Var}\left(\frac{x}{n}\right) = \text{Var}\left(\frac{1}{n} \cdot x\right) = \frac{1}{n^2} \text{Var}(x) = \frac{1}{n^2} \cdot npq \]

So the standard deviation is the square root of variance:

\[\sigma_{\hat{p}} = \frac{\sqrt{pq}}{\sqrt{n}} = \text{standard error of } \hat{p} \]

Values...