Finishing 7.2 \rightarrow \text{Binomial Experiments} \downarrow \text{Estimates of Population Proportions.}

→ Sample Proportion: \(\hat{p} = \frac{x}{n} \) (varies from sample to sample)

The sampling distribution of sample proportions is a collection of all \(\hat{p} \) values from random samples of size \(n \). What we know:

→ The \(\hat{p} \) distribution is approx. normal if \(np \geq 10 \) and \(n(1-p) \geq 10 \).

→ Mean of \(\hat{p} \) values is the population proportion, \(p \)

\[\mu_{\hat{p}} = E(\hat{p}) = p \leftarrow \text{estimate of } p \]

→ The variance of \(\hat{p} \) values is

\[\text{Var}(\hat{p}) = \frac{pq}{n} \]

→ The standard error (deviation) of \(\hat{p} \) values is the square root of variance:

\[\sigma_{\hat{p}} = \sqrt{\frac{pq}{n}} \]

→ The maximum error in an estimate, \(\hat{p} \), of \(p \) is

\[E = Z_{\frac{a}{2}} \cdot \left(\text{error} \right) = Z_{\frac{a}{2}} \cdot \sqrt{\frac{pq}{n}} \]

→ Confidence Interval

\[\hat{p} - E < p < \hat{p} + E \]

\[Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \]

\[p \leftarrow \hat{p} - E < p < \hat{p} + E \]