Test Stat: \(F = \frac{n \bar{x}^2}{s^2} \) \((= 7.2864) \)

Critical Value (from the F distribution)

Right Tail Test Always
(because when \(H_0 \) is false
the \(\bar{x} \) values are very different
so \(S_x^2 \) will be large \(\frac{1}{n} \)
\(F = \frac{n S_x^2}{s^2} \) will be large also)

Table A5

\[\begin{align*}
\text{df}_1 & = \text{numerator degrees of freedom} \\
\text{df}_2 & = \text{denominator degrees of freedom} \\
K(n-1) & \rightarrow \text{Right Tail C.V.} \\
\end{align*} \]

For our ex., let’s use \(\alpha = .05 \) \(K = 5 \)
\(\alpha = .05 \)
\[\begin{align*}
\text{df}_1 & \rightarrow K - 1 = 4 \\
\text{df}_2 & \\
K(n-1) & = 5(7-1) \\
& = 30 \\
& \rightarrow 2.6896 \\
\end{align*} \]

\(P \)-val requires a computer (optional)

Conclusion: reject \(H_0 \) if T.S. > C.V.

For this example, we rejected \(H_0 \); \(\frac{1}{r} \) will support \(H_1 \).

The data support the claim that the mean temp’s are different. (The treatments are more effective than placebo).